Answer:
the restraining forces in the x and y-directions are :
![\mathbf{ F_x =1510.63 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/ut6touu3gg5m4af10erxrfotlyzx2k37rr.png)
![\mathbf{F_y =6242.17 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/l0295oadkerx2t3aerttvuj2kqnv9g7w9j.png)
Step-by-step explanation:
From the given information;
Let us first calculate the outlet velocity by using continuity equation.
![A_1v_1= A_2v_2](https://img.qammunity.org/2021/formulas/engineering/college/jhl7nlhts26tfn85u40c5pr5qsf38hopal.png)
![(\pi)/(4)D_1^2 *v_1 = (\pi)/(4)D_2^2 *v_2](https://img.qammunity.org/2021/formulas/engineering/college/q4jqhtk6713vq9eu3amhpyu9iamkpnq71c.png)
where;
= inlet diameter = 6 - In
outlet diameter = 4 -In
inlet velocity
![v_1 = 5.5 \ ft/s](https://img.qammunity.org/2021/formulas/engineering/college/2424ah6yf0nl58qlqo12ebcwsi4u06e1l3.png)
outlet velocity = ???
![(\pi)/(4)*6^2 *5.5 = (\pi)/(4)*4^2 *v_2](https://img.qammunity.org/2021/formulas/engineering/college/xzhzxht68b4qipeofsaxh01mvc88n5tbur.png)
![36*5.5= 16 v_2](https://img.qammunity.org/2021/formulas/engineering/college/zwtg72nao5oicv1x0wa5fx7uxz948xh85m.png)
![198 = 16 v_2](https://img.qammunity.org/2021/formulas/engineering/college/7d5yk6sw85bl2htadipiu2ae7b8331xbhc.png)
![v_2 = (198)/(16)](https://img.qammunity.org/2021/formulas/engineering/college/sie5nztszb4f5zj71zh4bsaeax6x94a9ww.png)
to In; we have
Since 1 ft = 12 inches; thus
12.375 ft/s = (12.375 × 12 ) inches = 148.5 In/s
5.5 ft/s = 66 In/s
By using the linear momentum in x-direction for the volume ; we have the relation:
![\sum F_x = \sum (mdv)/(dt)x \\ \\ P_1A_1 - P_2A_2 * \ cos 45 + F_x = (m_2)V_2* \ cos 45 - ( m_1)v](https://img.qammunity.org/2021/formulas/engineering/college/gqq8jd33c2999fcan0znte6iumzrd1skyb.png)
where;
![P_1A_1 - P_2A_2 * \ cos 45 + F_x = (\rho A_2 V_2)V_2* \ cos 45 - ( \rho A_1 V_1)v](https://img.qammunity.org/2021/formulas/engineering/college/x4mphj6pqi0h73jfzpf5rwssr2yho07p4w.png)
![35*(\pi)/(4)*6^2 - 32.5*(\pi)/(4)*4^2 * \ cos 45 + F_x = (52.5)/(12^3)( (\pi)/(4)*4^2*(148.5)^2 * cos 45 - (\pi)/(4)*6^2*66^2)](https://img.qammunity.org/2021/formulas/engineering/college/k207nvwxzosuw8p20h2r5ppav3lt8kji42.png)
![700.81 + F_x = 2211.44](https://img.qammunity.org/2021/formulas/engineering/college/i4prkufxqj4luzvez9y1b9nm3v9u1ik74o.png)
![F_x = 2211.44-700.81](https://img.qammunity.org/2021/formulas/engineering/college/kli2q6wdqf1u0i9t4i26xyji5noh3s2z2a.png)
![\mathbf{ F_x =1510.63 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/ut6touu3gg5m4af10erxrfotlyzx2k37rr.png)
![\sum F_y =(m dvy)/(dt)](https://img.qammunity.org/2021/formulas/engineering/college/8ohipd0fx9fqwc83iui1yy27az1mmh5s5f.png)
![- P_2A_2 * \ Sin \ 45 + F_y = (\rho A_2 V_2 )V_2* \ sin 45 - 0](https://img.qammunity.org/2021/formulas/engineering/college/vacknjyahjq73udo33p5ys2dtnvmrtd1f9.png)
![F_y = (\rho A_2 V_2 )V_2* \ sin 45 + P_2A_2 * \ Sin \ 45 +](https://img.qammunity.org/2021/formulas/engineering/college/xhsd9j8f7bt3ptt5v9h2ttkt4txrjz5m8c.png)
![F_ y = 32.5 * (\pi)/(4)*4^2* sin 45 + (52.5)/(12^3) *(\pi)/(4)*4^2*148.5^2*sin45](https://img.qammunity.org/2021/formulas/engineering/college/91krzdkeg0fqfbftp9lv2nosr5e7pvsh6i.png)
![F_y = 288.79 +5953.38](https://img.qammunity.org/2021/formulas/engineering/college/gld4ssqdq76y0i6ozs4hgx9s2ukofbvu0j.png)
![\mathbf{F_y =6242.17 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/l0295oadkerx2t3aerttvuj2kqnv9g7w9j.png)
Therefore; the restraining forces in the x and y-directions are :
![\mathbf{ F_x =1510.63 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/ut6touu3gg5m4af10erxrfotlyzx2k37rr.png)
![\mathbf{F_y =6242.17 \ lbf}](https://img.qammunity.org/2021/formulas/engineering/college/l0295oadkerx2t3aerttvuj2kqnv9g7w9j.png)