Answer:
![\displaystyle \lim_(x \to 10^-) (1)/(x - 10) = -\infty](https://img.qammunity.org/2021/formulas/mathematics/college/n6v0ak6s3oq02n4jykan1vceald7ozqxp4.png)
General Formulas and Concepts:
Calculus
Limits
- Right-Side Limit:
![\displaystyle \lim_(x \to c^+) f(x)](https://img.qammunity.org/2021/formulas/mathematics/college/unzv8gs2w7q27fbcxy9fkdkob2xjfxqebv.png)
- Left-Side Limit:
![\displaystyle \lim_(x \to c^-) f(x)](https://img.qammunity.org/2021/formulas/mathematics/college/ww1dgywo1oi9aiuk8vbnbwlhsotarvo48y.png)
Graphical Limits
Explanation:
If we graph the function, we can see that as we approach 3 from the left, we go towards negative infinity.
∴
![\displaystyle \lim_(x \to 10^-) (1)/(x - 10) = -\infty](https://img.qammunity.org/2021/formulas/mathematics/college/n6v0ak6s3oq02n4jykan1vceald7ozqxp4.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits