Answer:
95% of confidence intervals are
(31.5215 , 53.4785)
Explanation:
Explanation:-
Given sample size 'n' =24
Mean of the sample x⁻ = 42.5
Standard deviation of the sample 'S' = 26
95% of confidence intervals are determined by
![(x^(-) - t_(0.05) (S)/(√(n) ) , x^(-) + t_(0.05) (S)/(√(n) ))](https://img.qammunity.org/2021/formulas/mathematics/college/107ofxnj1x7auv4or6phr46u4rsq89nhkm.png)
Degrees of freedom
ν =n-1 = 24-1 =23
![t_(0.05) = 2.0686](https://img.qammunity.org/2021/formulas/mathematics/college/y4f8rfadw5500ro0ttxwwpcnh6il15zbns.png)
95% of confidence intervals are
![(42.5 - 2.0686 (26)/(√(24) ) , 42.5+ 2.0686 (26)/(√(24) ))](https://img.qammunity.org/2021/formulas/mathematics/college/c7vwgr37xdf7nzbslnwirfoz1ffcdh8uzm.png)
( 42.5 -10.9785 ,42.5 +10.9785)
(31.5215 , 53.4785)