Answer:
(a) 2.3
(b) 0.5245
(c) 0.7242
(d) 0.5245
Explanation:
The data provided is:
S = {180.5, 181.7, 180.9, 181.6, 182.6, 181.6, 181.3, 182.1, 182.1, 180.3, 181.7, 180.5}
(a)
The formula to compute the sample range is:

The data set arranged in ascending order is:
S' = {180.3 , 180.5 , 180.5 , 180.9 , 181.3 , 181.6 , 181.6 , 181.7 , 181.7 ,, 182.1 , 182.1 , 182.6}
The minimum value is, 180.3 and the maximum value is, 182.6.
Compute the sample range as follows:


Thus, the sample range is 2.3.
(b)
Compute the sample variance as follows:

![=(1)/(12-1)* [(180.5-181.41)^(2)+(181.7-181.41)^(2)+...+(180.5-181.41)^(2)]\\\\=(1)/(11)* 5.7692\\\\=0.524473\\\\\approx 0.5245](https://img.qammunity.org/2021/formulas/mathematics/college/t2dx04qyjir57hmro76l3decqcjiibf0ry.png)
Thus, the sample variance is 0.5245.
(c)
Compute the sample standard deviation as follows:


Thus, the sample standard deviation is 0.7242.
(d)
Compute the sample variance using the shortcut method as follows:
![S^(2)=(1)/(n-1)\cdot [\sum x_(i)^(2)-n(\bar x)^(2)]](https://img.qammunity.org/2021/formulas/mathematics/college/vw2sympimq6ks730drcrcynqy58j1w9tw0.png)
![=(1)/(12-1)\cdot [394913.57-(12* (181.41)^(2)]\\\\=(1)/(11)* [394913.57-394907.80]\\\\=(5.77)/(11)\\\\=0.5245](https://img.qammunity.org/2021/formulas/mathematics/college/644nv4b47h6dwfgcqcj8rbfcpfxu2z54hy.png)
Thus, the sample variance is 0.5245.