216k views
2 votes
A random sample is selected from a population with mean and standard deviation . Determine the mean and standard deviation of the sampling distribution of for each of the following sample sizes:

a. n = 9
b. n = 15
c. n = 36
d. n = 50
e. n = 100
f. n = 400

User Xgretsch
by
7.7k points

1 Answer

7 votes

Answer:

a. Mean = 100, S.D. = 3.333

b. Mean = 100, S.D. = 2.582

c. Mean = 100, S.D. = 1.667

d. Mean = 100, S.D. = 1.414

e. Mean = 100, S.D. = 1

f. Mean = 100, S.D. = 0.5

Explanation:

The question is incomplete:

Population mean: 100

Population standard deviation: 10.

The mean for any sampling distribution is equal to the population mean.

The standard deviation for the sampling distribution depends on the population standard deviation and the sample size as:


\sigma_s=(\sigma)/(√(n))

We can calculate the parameters of the sampling distributions as:

a. n = 9


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(9))=(10)/(3)=3.333

b. n = 15


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(15))=(10)/(3.873)=2.582

c. n = 36


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(36))=(10)/(6)=1.667

d. n = 50


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(50))=(10)/(7.071)=1.414

e. n = 100


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(100))=(10)/(10)=1

f. n = 400


\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(400))=(10)/(20)=0.5

User Kevin Cantwell
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories