Answer:
a. Mean = 100, S.D. = 3.333
b. Mean = 100, S.D. = 2.582
c. Mean = 100, S.D. = 1.667
d. Mean = 100, S.D. = 1.414
e. Mean = 100, S.D. = 1
f. Mean = 100, S.D. = 0.5
Explanation:
The question is incomplete:
Population mean: 100
Population standard deviation: 10.
The mean for any sampling distribution is equal to the population mean.
The standard deviation for the sampling distribution depends on the population standard deviation and the sample size as:
![\sigma_s=(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/2aezn7ym6hwd9lqq488xqqsqb5pdrulq6h.png)
We can calculate the parameters of the sampling distributions as:
a. n = 9
![\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(9))=(10)/(3)=3.333](https://img.qammunity.org/2021/formulas/mathematics/college/ooflaqwr5hrlh2uyb9l9s8pacnkcsdlefj.png)
b. n = 15
![\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(15))=(10)/(3.873)=2.582](https://img.qammunity.org/2021/formulas/mathematics/college/c8znpwa3khmlou7qm1vsav5e7zynab3ihp.png)
c. n = 36
![\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(36))=(10)/(6)=1.667](https://img.qammunity.org/2021/formulas/mathematics/college/2sne7x8m7uqo295myol0lfymj1irhq0mn2.png)
d. n = 50
![\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(50))=(10)/(7.071)=1.414](https://img.qammunity.org/2021/formulas/mathematics/college/10axesivvvosjayr6by6ptnw94hvy58m6p.png)
e. n = 100
f. n = 400
![\mu_s=\mu=100\\\\ \sigma_s=(\sigma)/(√(n))=(10)/(√(400))=(10)/(20)=0.5](https://img.qammunity.org/2021/formulas/mathematics/college/1rigmc4mjp5rpnbbyqjj7bj5yeoa3h6lct.png)