Answer:
The direction will be "39.8°". The further explanation is given below.
Step-by-step explanation:
The equation will be:
⇒

On differentiating the above, we get
⇒


On differentiating again, we get
⇒

Demonstrate the radius of the path curvature .
⇒
![\rho=\frac{[1+((dy)/(dx))^2]^{(3)/(2)}}\left](https://img.qammunity.org/2021/formulas/engineering/high-school/cewn3s3xho66p1gfvfahyt3rd3k1fwhkf3.png)
![=\frac{[1+((x)/(12) )^2]^{(3)/(2)}}\left](https://img.qammunity.org/2021/formulas/engineering/high-school/vqucsy00o7j2nbjtmdlkw77otwzt9tno06.png)
![=\frac{[1+((10)/(12))^2]^{(3)/(2)}}{(1)/(12) }](https://img.qammunity.org/2021/formulas/engineering/high-school/exiee2oaz42urojppmfs4tj9srlu7bahqz.png)

On calculating the acceleration's normal component, we get
⇒



Magnitude,
⇒



The direction of crate velocity will be:
⇒

On putting the values, we get


