Answer:
a.
i) & ii) -> See Explanation Below
a.
iii)
and
![x = 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/585tdx4jizj0hgwm6l105rlaurx7sdkq3u.png)
b.
i)
![Median = 7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/li6dypyvspxmrm4tu939rtcmyyrhsls54r.png)
ii)
![Mode = 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/536ep1tmjv7d3x2iwvd2g2410m4mjjfvas.png)
Explanation:
Given
Number of pets: 2 , 4, 6, 8, 10
Number of students: x, 2, y, 6, 14
Total students = 40
Required
a) (i) show that x+y=18
Given that total number of students is 40;
This implies that
![x + 2 + y + 6 + 14 = 40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q65ytbt6ihtbb7kvv57yjvw3doigp5fq0h.png)
Collect like terms
![x + y = 40 - 14 - 6 - 2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2vzi2wbo4itup9o92rbfgsvxubn3g8mu7q.png)
![x + y = 18](https://img.qammunity.org/2021/formulas/mathematics/middle-school/np3632vebdx4plakj0bcqyxxmcbm5nuea6.png)
a) (ii) If the mean of the distribution is 6.4, show that x +3y =30
The mean of a distribution is calculated as thus
![Mean = (\sum fx)/(\sum x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8h36f8aswk6bydioavztefnwweh99ghoe2.png)
is gotten by multiplying number of pets by corresponding number of students
![\sum fx} = 2 * x + 4 * 2 + 6 * y + 8 * 6 + 10 * 14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b1kovke5e2jwm0bkf02iyehxjlp8qiimh3.png)
![\sum fx} = 2 x + 8 + 6y + 48 + 140](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x00tm031uu00wtmgmdcwgjm4mh9mul77xz.png)
![\sum fx} = 2 x + 6y + 48 + 140+ 8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/788sw7gkljxnhco7agzvovxhahh2y76zf0.png)
![\sum fx} = 2 x + 6y + 196](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cmpnbv25xfynfusvo3opxne479q9wiponm.png)
is the total number of students
![\sum x} = 40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j2m6493b1gg67bcwyj1traxxb0ih295qk2.png)
So;
becomes
![Mean = (2 x + 6y + 196)/(40)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6v25upn71asjyiwtx8ya9hyazg408z0sdv.png)
Substitute 6.4 for Mean
![6.4 = (2 x + 6y + 196)/(40)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mmkock2z6jz7ri5frx0vbsoamnbac169a2.png)
Multiply both sides by 40
![256 = 2 x + 6y + 196](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oawld0fph84g6oakxql50ejekk1w8fwhxx.png)
Subtract 196 from both sides
![256 -196= 2 x + 6y + 196-196](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eodzznsyztyg0r2pnh6asa28r37ehak6za.png)
![60= 2 x + 6y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ttxragx0aomazqb5zf7u1eqrllh8lorzvi.png)
Divide both sides by 2
![(60)/(2)= (2 x)/(2) + (6y)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4alg33voo0txjfw95juzgrtth0nhxe4o8b.png)
![30 = (2 x)/(2) + (6y)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eey3ccw77k8tf4zi5g4h6dfvzql0ezlpkf.png)
![30 = x + 3y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qo4x4tg69rfcqwg58wq3gphrzd7xg94d1v.png)
Reorder
![x + 3y = 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k6calfkw7a8kpxxho3zto7bk53pd4txa19.png)
a) (iii) Hence, find the value of x and of y
Using
and
![x + 3y = 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k6calfkw7a8kpxxho3zto7bk53pd4txa19.png)
Subtract both equations
![(x + y = 18) - (x + 3y = 30)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/46oaej64zknu11j0yo5wqqi6l557pdiqga.png)
![x - x + y - 3y = 18 - 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4u3qzywxga04rt9juxaln5snuk3av81nls.png)
![y - 3y = 18 - 30](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x4x9tvbv7i1ln29ydb3x2w8jbmcwvap5gf.png)
![-2y = -12](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l5zemlramehid0kdq0lztzctez4ciupgth.png)
Divide both sides by -2
![(-2y)/(-2) = (-12)/(-2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/53oscro94dq166ro8g7adm5qp1etnojvk3.png)
![y = (-12)/(-2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oafks9r45d7tgb6kn9s49qsl6y1gtm16qe.png)
![y = 6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y58czv7tibr01pkeudee9cxj34dnfcjye5.png)
Substitute 6 for y in
![x + y = 18](https://img.qammunity.org/2021/formulas/mathematics/middle-school/np3632vebdx4plakj0bcqyxxmcbm5nuea6.png)
becomes
![x + 6 = 18](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yntuo9jjqrpkq39fleym71k62m2qizkr5b.png)
Subtract 6 from both sides
![x + 6 - 6 = 18 - 6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/skda62u23y0hjkdig6g7sxnzwruickmfnn.png)
![x = 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/585tdx4jizj0hgwm6l105rlaurx7sdkq3u.png)
b.
i) Calculate the Median
First, we need to tabulate the given data properly
Number of Pets ------ Number of students ------- Cumulative Frequency
2 ------------------------------12 -----------------------------------12
4 ------------------------------2 -----------------------------------14
6 ------------------------------6 -----------------------------------20
8 ------------------------------6 -----------------------------------26
10 ------------------------------14 -----------------------------------40
Since the number of pets is already arranged in ascending order,
the next step is to calculate the median element
Number of students = 40
![Median = (40)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g05r120j0d30ea3248urxjbznuh3iiiuf1.png)
Median = 20
Given that number of students (40) is an even number,
The median is the average of the 20th and 21st element
From the table above; the median can be gotten from
6 ------------------------------6 -----------------------------------20
8 ------------------------------6 -----------------------------------26
The 20th element = 6
The 21st element = 8
![Median = (6 + 8)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fmfttb3ugxpzpugwzkp6ms4o84mrvjb0gu.png)
![Median = (14)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5n7ct0ge4jy51czy7qvupnyiw87wjxgray.png)
![Median = 7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/li6dypyvspxmrm4tu939rtcmyyrhsls54r.png)
ii) Mode
The mode is the corresponding data with the highest frequency
The highest frequency is 14;
The number of pets with frequency of 14 is 10
Hence,
![Mode = 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/536ep1tmjv7d3x2iwvd2g2410m4mjjfvas.png)