Answer:
![(x^2)/(8) + (y^2)/(4)=1](https://img.qammunity.org/2021/formulas/mathematics/college/w4s0v8p2v3rwf82sbwvl7cb43bmfu90h08.png)
Explanation:
The directrices in this case are vertical lines, so we have a horizontal ellipse. The equation for that ellipse is:
![((x - h)^2)/(a^2) + ((y-k)^2)/(b^2)=1](https://img.qammunity.org/2021/formulas/mathematics/college/p66vh4ach3vorccao59knzlryd9eres5so.png)
The center of the ellipse is (h,k), the diretrix is x = d and the foci are given by (h+c, k) and (h-c, k)
So, comparing the foci, we have that k = 0 and:
![h + c = 2](https://img.qammunity.org/2021/formulas/mathematics/college/9obckg6qdrus4lij21q9nvnxrr1cbpsop5.png)
![h - c = -2](https://img.qammunity.org/2021/formulas/mathematics/college/1pn3isjdh0loz38i4l6253sgrxjasbnvh7.png)
Adding these two equations, we have:
![2h = 0](https://img.qammunity.org/2021/formulas/mathematics/college/wu7w58hgpv5bx6duepknz8cg1o43wvht4c.png)
![h = 0](https://img.qammunity.org/2021/formulas/physics/high-school/esxk1q3jg4scik5sek99kon51ntxxoeok6.png)
![c = 2](https://img.qammunity.org/2021/formulas/chemistry/middle-school/i0kwmkiihbjeqmpfsvu5w89gyqqwgatjhi.png)
We can find the value of a^2 using the property:
![c / a = a / d](https://img.qammunity.org/2021/formulas/mathematics/college/w3y1jxg9hue06x5cak9d5q53fodila320q.png)
Using c = 2 and d = 4, we have:
![a^2 = c * d](https://img.qammunity.org/2021/formulas/mathematics/college/7su0mue1efqaea3pfx8cfwcbgyur8thbv2.png)
![a^2 = 8](https://img.qammunity.org/2021/formulas/mathematics/college/f45sb6h6qptrro729fog0o1dtq0niy7rvy.png)
Now, to find b^2, we use the property:
![a^2 = b^2 + c^2](https://img.qammunity.org/2021/formulas/mathematics/college/2dzibiyzrrp5d73fiu4a54go36ng0hxo53.png)
![8 = b^2 + 4](https://img.qammunity.org/2021/formulas/mathematics/college/zfwkxtvztducw57dssadewfmt345oioi6b.png)
![b^2 = 4](https://img.qammunity.org/2021/formulas/mathematics/college/na1msug0cy7nolbuef5je2gsn2gyrk4nfm.png)
So the equation of the ellipse is:
![(x^2)/(8) + (y^2)/(4)=1](https://img.qammunity.org/2021/formulas/mathematics/college/w4s0v8p2v3rwf82sbwvl7cb43bmfu90h08.png)