1.8k views
3 votes
What is the product? Assume x greater-than-or-equal-to 0 (StartRoot 3 x EndRoot + StartRoot 5 EndRoot) (StartRoot 15 x EndRoot + 2 StartRoot 30 EndRoot)

2 Answers

3 votes

Answer:it’s b

Explanation:

On edge

User Igbgotiz
by
5.3k points
6 votes

Answer:


3\sqrt5 x+ \sqrt x (6 √(10) +5√(3)) +10 \sqrt6

Explanation:

To find the product :


(√(3x) +\sqrt5)(√(15x) +2√(30))


√(3x)(√(15x) +2√(30)) +\sqrt5(√(15x) +2√(30))\\\Rightarrow √(3x)* √(15x) +√(3x)* 2√(30) +\sqrt5 * √(15x) +\sqrt5* 2√(30)\\\Rightarrow √(45) * x + 2 √(90x) + √(75x) + 2 √(150)\\\Rightarrow √(5 * 9) * x + 2 √(9* 10x) + √(25 * 3x) + 2 √(25 * 6)\\\Rightarrow 3\sqrt5 x+ 2 * 3 √(10x) +5√(3x) +2 * 5 \sqrt6\\\Rightarrow 3\sqrt5 x+ 6 √(10x) +5√(3x) +10 \sqrt6


\Rightarrow 3\sqrt5 x+ \sqrt x (6 √(10) +5√(3)) +10 \sqrt6

Some identities used:

1.
(a+b)(c+d) = a (c+d) + b(c+d)

2.
\sqrt9 =3

3.
√(25) =5

4.
\sqrt x * \sqrt x=x

5.
\sqrt a * \sqrt b = √(ab)

So, the solution is
3\sqrt5 x+ \sqrt x (6 √(10) +5√(3)) +10 \sqrt6

User Chad Robinson
by
5.8k points