171k views
0 votes
What are the solutions of the equation 9x^4 – 2x^2 – 7 = 0? Use u substitution to solve

1 Answer

6 votes

Answer:


x=1\\x=-1

Explanation:


9x^(4) -2x^(2) -7=0\\y=x^(2) \\9y^(2) -2y-7=0\\y=\frac{2\pm\sqrt{(-2)^(2) -4*9(-7)} }{2*9} =(2\pm√(4+252) )/(18) =(2\pm√(256) )/(18)


√(256) =16


y=(2+16)/(18) =(18)/(18) =1 \\or \\y=(2-16)/(18) =-(14)/(18) =-(7)/(9)


x^(2) = 1 \\or \\x^(2) =-(7)/(9)


x=\pm 1


x^(2) =-(7)/(9) has no solution since fot all
x on the real line,
x^(2) \geq 0 and
-(7)/(9) < 0.

User Yannick Y
by
5.1k points