Answer:
- Iron (III) oxide is the limiting reactant.
-
![m_(Al_2O_3)=319.9gAl_2O_3](https://img.qammunity.org/2021/formulas/chemistry/college/j4groc8uevcxrwyrddt2g4797ti9nwqigv.png)
-
![m_(Fe)=350.4gFe](https://img.qammunity.org/2021/formulas/chemistry/college/rgpnsaadc7z94kgjipvzskpvf53wblhhwt.png)
Step-by-step explanation:
Hello,
In this case, we consider the following reaction:
![2Al + Fe_2O_3 \rightarrow Al_2O_3 +2Fe](https://img.qammunity.org/2021/formulas/chemistry/college/4qy4s27abaaopcl3yld0sdwktis06ue22s.png)
Thus, for identifying the limiting reactant we should compute the available moles of aluminium in 268 g:
![n_(Al)=268gAl*(1molAl)/(26.98gAl) =9.93molAl](https://img.qammunity.org/2021/formulas/chemistry/college/itmj2m8wm5a39eudnrh1en7hy8t1jx0vra.png)
Next, we compute the moles of aluminium that are consumed by 501 grams of iron (III) oxide via their 2:1 molar ratio:
![n_(Al)^(consumed)=501gFe_2O_3*(1molFe_2O_3)/(159.69gFe_2O_30)*(2molAl)/(1molFe_2O_3)=6.27molAl](https://img.qammunity.org/2021/formulas/chemistry/college/o8bh0c9q93ahckyr87qgi3nwm0bs2zglex.png)
Thus, we notice there are less consumed moles of aluminium than available, for that reason, it is in excess; therefore, the iron (III) oxide is the limiting reactant.
Moreover, the theoretical mass of aluminium oxide is:
![m_(Al_2O_3)=6.27molAl*(1molAl_2O_3)/(2molAl) *(101.96gAl_2O_3)/(1molAl_2O_3) =319.9gAl_2O_3](https://img.qammunity.org/2021/formulas/chemistry/college/l06954cxdltcy0owu40smkmxfeczr4bcob.png)
And the theoretical mass of iron is:
![m_(Fe)=6.27molAl*(2molFe)/(2molAl) *(55.845 gFe)/(1molFe) =350.4gFe](https://img.qammunity.org/2021/formulas/chemistry/college/jlbkabrk8rvgyuuoxon7kj04llbegnl2au.png)
Best regards.