Answer:
On average it will take 13 hrs 53 minutes before the van is filled
Explanation:
The first thing we need to do here is to find find the number of defective light bulbs
Using the poisson process, that would be;
λ * p
where λ is the poisson rate of production which is 300 per hour
and p is the probability that the produced bulb is defective = 0.012
So the number of defective bulbs produced within the hour = 0.012 * 300 = 3.6 light bulbs per hour
Now, let X be the time until 50 light bulbs are produced. Then X is a random variable with the parameter (r, λ) = (50, 3.6)
What we need to find however is E(X)
Thus, the expected value of a gamma random variable X with the parameter (x, λ) is;
E(X) = r/λ = 50/3.6 = 13.89
Thus the amount of time it will take before the Can will be filled is 13 hrs 53 minutes