Question Correction
A circle is inscribed in a regular hexagon with side length 10 feet. What is the area of the shaded region? Recall that in a 30–60–90 triangle, if the shortest leg measures x units, then the longer leg measures
units and the hypotenuse measures 2x units.
- (300 – 75π)
![ft^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/wtexvtcjkxs5ltvf06sas0k6db76wd4ntf.png)
![(150√(3)-25\pi) $ ft^2](https://img.qammunity.org/2021/formulas/mathematics/college/d67ftspdkfnmxkicdtzraateidqfdmqn7r.png)
- (300 – 25π) ft2
Answer:
(A)
![(150√(3)-75\pi) $ Square Units](https://img.qammunity.org/2021/formulas/mathematics/college/yhxvydpn8qgu64il4ob0ilhm3fqxz2i8pl.png)
Explanation:
Area of the Shaded region =Area of Hexagon-Area of the Circle
Area of Hexagon
Length of the shorter Leg = x ft
Side Length of the Hexagon =10 feet
Perimeter of the Hexagon = 10*6 =60 feet
Apothem of the Hexagon (Length of the longer leg)
=
feet
![=5√(3)$ feet](https://img.qammunity.org/2021/formulas/mathematics/college/vhb5mldccyaec216v84u2japphmckkyzdf.png)
![\text{Area of a Regular hexagon}=(1)/(2) * $Perimeter * $Apothem](https://img.qammunity.org/2021/formulas/mathematics/college/ebw2x03nbamt1jspofacr0bun3iaym12ua.png)
![=(1)/(2) * 60 * 5√(3)\\=150√(3)$ Square feet](https://img.qammunity.org/2021/formulas/mathematics/college/y6zkfy0u39s0nxtklb74l0ql1p7d47hxs2.png)
Area of Circle
The radius of the Circle = Apothem of the Hexagon
![=5√(3)$ feet](https://img.qammunity.org/2021/formulas/mathematics/college/vhb5mldccyaec216v84u2japphmckkyzdf.png)
Area of the Circle
![=(5√(3))^2 * \pi\\ =25 * 3 * \pi\\=75\pi $ Square feet](https://img.qammunity.org/2021/formulas/mathematics/college/9fgnzqdv48sabtondr2all2agz623bbvia.png)
Therefore:
Area of the Shaded region
![= (150√(3)-75\pi) $ Square feet](https://img.qammunity.org/2021/formulas/mathematics/college/px704ele8ky7ojka8j418y343uwjh0y31u.png)