Answer:
Step-by-step explanation:
Given that:
Torque T = 2300 lb - ft
Bending moment M = 1500 lb - ft
axial thrust P = 2500 lb
yield points for tension σY= 100 ksi
yield points for shear τY = 50 ksi
Using maximum-shear-stress theory
![\sigma_A = (P)/(A)+(Mc)/(I)](https://img.qammunity.org/2021/formulas/engineering/college/ry05xj5h8crixb2ya916xff1aoh7u6f72a.png)
where;
![A = \pi c^2](https://img.qammunity.org/2021/formulas/engineering/college/e2m3cimbsnahrweaze9f9cwrx1hxbyvgv0.png)
![I = (\pi)/(4)c^4](https://img.qammunity.org/2021/formulas/engineering/college/tghogrnfhwe16ihj7qsh92ih1ezsxkpyq0.png)
![\sigma_A = (P)/(\pi c^2)+(Mc)/( (\pi)/(4)c^4)](https://img.qammunity.org/2021/formulas/engineering/college/qxqze7ik35xrifj26fxd1dwg6auvb89uiw.png)
![\sigma_A = (2500)/(\pi c^2)+(1500*12c)/( (\pi)/(4)c^4)](https://img.qammunity.org/2021/formulas/engineering/college/5y3ooqn784gxuwhx494xsbaecnk3yh0yr6.png)
![\sigma_A = (2500)/(\pi c^2)+(72000c)/(\pi c^3)}](https://img.qammunity.org/2021/formulas/engineering/college/i7j2lgdk4tep3gdocxlhc540pjd7m69nhc.png)
![\tau_A = (T_c)/(\tau)](https://img.qammunity.org/2021/formulas/engineering/college/uf1cxcmtapf6vb8git3qt7ampvd8q4mbs7.png)
where;
![\tau = (\pi c^4)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/mhaolmbw4vbb272jqq0we9v8gnxrhpmwvo.png)
![\tau_A = (T_c)/((\pi c^4)/(2))](https://img.qammunity.org/2021/formulas/engineering/college/zuyw47v8th46v5cr62e9mrvkzejj1irxja.png)
![\tau_A = (2300*12 c)/((\pi c^4)/(2))](https://img.qammunity.org/2021/formulas/engineering/college/29z9kd55hw2ggp0a3fhvwwmg3cs0yifgm6.png)
![\tau_A = (55200 )/(\pi c^3)}](https://img.qammunity.org/2021/formulas/engineering/college/4m9dg99erpcocelmnrs63wa35rrt8vs8eo.png)
![\sigma_(1,2) = (\sigma_x+\sigma_y)/(2) \pm \sqrt{((\sigma_x - \sigma_y)^2)/(2)+ \tau_y^2}](https://img.qammunity.org/2021/formulas/engineering/college/1uh094lcux99kj9f4m28b4ew6if83til08.png)
![\sigma_(1,2) = (2500+72000)/(2 \pi c ^3) \pm \sqrt{((2500 +72000)^2)/(2 \pi c^3)+ (55200)/(\pi c^3)} \ \ \ \ \ ------(1)](https://img.qammunity.org/2021/formulas/engineering/college/hbbua8jxpowuzre0sl6bbypfn6detddi83.png)
Let say :
![|\sigma_1 - \sigma_2| = \sigma_y](https://img.qammunity.org/2021/formulas/engineering/college/6zyhjfkq18gdgt4oo1thnmgi1ckuwixrdb.png)
Then :
![2\sqrt{( (2500c + 72000)/(2 \pi c^3))^2+ ( (55200)/(\pi c^3))^2 } = 100(10^3)](https://img.qammunity.org/2021/formulas/engineering/college/ump0qhm81t8l9toy4dvaf4nxpqmqf8d4mh.png)
![(2500 c + 72000)^2 +(110400)^2 = 10000*10^6 \pi^2 c^6](https://img.qammunity.org/2021/formulas/engineering/college/fjz3udpenpzttemuww8wdfyhdd2rk156sk.png)
![6.25c^2 + 360c+ 17372.16-10,000\ \pi^2 c^6 =0](https://img.qammunity.org/2021/formulas/engineering/college/8q88eazyo5oy5hv6ewm5sf60kh88f5kvcr.png)
According to trial and error;
c = 0.75057 in
Replacing c into equation (1)
![\sigma_(1,2) = (2500+72000)/(2 \pi (0.75057) ^3) \pm \sqrt{((2500 +72000)^2)/(2 \pi (0.75057)^3)+ (55200)/(\pi (0.75057)^3)}](https://img.qammunity.org/2021/formulas/engineering/college/m6qhjs5rntl6kto9b4hq51bvf0x8448kfn.png)
![\sigma_(1,2) = (2500+72000)/(2 \pi (0.75057) ^3) + \sqrt{((2500 +72000)^2)/(2 \pi (0.75057)^3)+ (55200)/(\pi (0.75057)^3)} \ \ \ OR \\ \\ \\ \sigma_(1,2) = (2500+72000)/(2 \pi (0.75057) ^3) - \sqrt{((2500 +72000)^2)/(2 \pi (0.75057)^3)+ (55200)/(\pi (0.75057)^3)}](https://img.qammunity.org/2021/formulas/engineering/college/3trgob6ic4f1o2ok3djy7200bid8sma1lw.png)
![\sigma _1 = 22193 \ Psi](https://img.qammunity.org/2021/formulas/engineering/college/9t9zc4vtkz4ldkb7v2irnpgi3bzfbj98th.png)
![\sigma_2 = -77807 \ Psi](https://img.qammunity.org/2021/formulas/engineering/college/3he2z7n7l9d5rrm18adjkzfpqmyjm30r86.png)
The required diameter d = 2c
d = 1.50 in or 0.125 ft