222k views
4 votes
prove that the points (- 6 - 8) (- 16 12) and( - 26 - 18) are the vertices of an isosceles right angled triangle​

1 Answer

5 votes

Answer:

The answer is "True".

Step-by-step explanation:

Given points:


A= (-6,-8)\\B=(-16, 12)\\C=(-26, -18)\\

Condition of the right-angle triangle is:
\bold{AC^2= AB^2+BC^2}

Formula to find length:


Length= √((x_2-x_1)^2+(y_2-y_1)^2)


AC = (-6,-8)(-26,-18)\\\\x_1= -6 \ \ y_1=-8 \ \ \ and \ \ \ x_2=-26 \ \ y_2=-18\\


\Rightarrow AC= √((-26-(-6))^2+(-18-(-8))^2)\\\\\Rightarrow AC= √((-26+6))^2+(-18+8))^2)\\\\\Rightarrow AC= √((-20))^2+(-10))^2)\\\\\Rightarrow AC= √(400+100)\\\\\Rightarrow AC= √(500)\\\\


AB = (-6,-8)(-16,12)\\\\x_1= -6 \ \ y_1=-8 \ \ \ and \ \ \ x_2=-16 \ \ y_2=12\\


\Rightarrow AB= √((-16-(-6))^2+(12-(-8))^2)\\\\\Rightarrow AB= √((-16+6))^2+(12+8))^2)\\\\\Rightarrow AB= √((-10))^2+(20))^2)\\\\\Rightarrow AB= √(100+400)\\\\\Rightarrow AB= √(500)\\\\


BC = (-16,12)(-26,-18)\\\\x_1= -16 \ \ y_1=12 \ \ \ and \ \ \ x_2=-26 \ \ y_2=-18\\


\Rightarrow BC= √((-26-(-16))^2+(-18-12)^2)\\\\\Rightarrow BC= √((-26+16))^2+(-30)^2)\\\\\Rightarrow BC= √((-10)^2+(-30)^2)\\\\\Rightarrow BC= √(100+900)\\\\\Rightarrow BC= √(1000)\\\\


\Rightarrow {AC^2= AB^2+BC^2}\\\\\Rightarrow (√(1000))^2= (√(500+500))^2\\\\\Rightarrow 1000=1000\\

The angle is right-angled triangle

User YnkDK
by
5.7k points