222k views
4 votes
prove that the points (- 6 - 8) (- 16 12) and( - 26 - 18) are the vertices of an isosceles right angled triangle​

1 Answer

5 votes

Answer:

The answer is "True".

Step-by-step explanation:

Given points:


A= (-6,-8)\\B=(-16, 12)\\C=(-26, -18)\\

Condition of the right-angle triangle is:
\bold{AC^2= AB^2+BC^2}

Formula to find length:


Length= √((x_2-x_1)^2+(y_2-y_1)^2)


AC = (-6,-8)(-26,-18)\\\\x_1= -6 \ \ y_1=-8 \ \ \ and \ \ \ x_2=-26 \ \ y_2=-18\\


\Rightarrow AC= √((-26-(-6))^2+(-18-(-8))^2)\\\\\Rightarrow AC= √((-26+6))^2+(-18+8))^2)\\\\\Rightarrow AC= √((-20))^2+(-10))^2)\\\\\Rightarrow AC= √(400+100)\\\\\Rightarrow AC= √(500)\\\\


AB = (-6,-8)(-16,12)\\\\x_1= -6 \ \ y_1=-8 \ \ \ and \ \ \ x_2=-16 \ \ y_2=12\\


\Rightarrow AB= √((-16-(-6))^2+(12-(-8))^2)\\\\\Rightarrow AB= √((-16+6))^2+(12+8))^2)\\\\\Rightarrow AB= √((-10))^2+(20))^2)\\\\\Rightarrow AB= √(100+400)\\\\\Rightarrow AB= √(500)\\\\


BC = (-16,12)(-26,-18)\\\\x_1= -16 \ \ y_1=12 \ \ \ and \ \ \ x_2=-26 \ \ y_2=-18\\


\Rightarrow BC= √((-26-(-16))^2+(-18-12)^2)\\\\\Rightarrow BC= √((-26+16))^2+(-30)^2)\\\\\Rightarrow BC= √((-10)^2+(-30)^2)\\\\\Rightarrow BC= √(100+900)\\\\\Rightarrow BC= √(1000)\\\\


\Rightarrow {AC^2= AB^2+BC^2}\\\\\Rightarrow (√(1000))^2= (√(500+500))^2\\\\\Rightarrow 1000=1000\\

The angle is right-angled triangle

User YnkDK
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories