Answer:
PERIMETER = 41.73 units
Explanation:
To find the perimeter of the triangle, we will follow the steps below:
Let the coordinate of the triangle be ABC, that is
A(9,0) B(-5,0) and C(-10,6)
We will first find distance AB, BC and CA using the distance formula
|D| = √(x₂-x₁)² +(y₂-y₁)²
A(9,0) B(-5,0)
x₁ =9 y₁=0 x₂=-5 y₂=0
substitute the values into the formula
|AB| = √(-5-9)² +(0-0)²
= √(-14)² +(0)²
=√196
=14
|AB| = 14 units
B(-5,0) C(-10,6)
x₁ =-5 y₁=0 x₂=-10 y₂=6
substitute the values into the formula
|BC| = √(-10+ 5)² +(6-0)²
=√(-5)² +(6)²
=√25 + 36
=√61
≈7.81
|BC| ≈7.81 units
C(-10,6) A(9,0)
x₁ =-10 y₁=6 x₂=9 y₂=0
substitute the values into the formula
|CA| = √(9+10)² +(0-6)²
= √(19)² +(-6)²
=√361 +36
=√397
≈19.92 units
|CA|≈19.92 units
Perimeter of triangle = |AB|+|BC|+|CA|
=14+7.81+19.92
=41.73
PERIMETER = 41.73 units