79.5k views
1 vote
What is the following product? Assume x greater-than-or-equal-to 0 and y greater-than-or-equal-to 0 StartRoot 5 x Superscript 8 Baseline y squared EndRoot times StartRoot 10 x cubed EndRoot times StartRoot 12 y EndRoot

User Jovy
by
5.8k points

2 Answers

6 votes

Answer: 10x^5y √6xy or B on edge

Explanation:

edge 2021

User Superdrac
by
6.3k points
6 votes

Answer:

The value of the expression is
10√(6)x^(3)y.

Explanation:

The expression provided is:


\sqrt{5x^(3)y}* \sqrt{10x^(3)}* √(12y)

It is provided that x ≥ 0 and y ≥ 0.

Rules of exponent:


a^(m)* a^(n)=a^(m+n)

Compute the value of the expression as follows:


\sqrt{5x^(3)y}* \sqrt{10x^(3)}* √(12y)=\sqrt{(5x^(3)y)* (10x^(3))* (12y)}


=\sqrt{(5* 10* 12)* (x^(3)* x^(3))* (y* y)}\\\\=\sqrt{600* x^(6)* y^(2)}\\\\=√(600)* \sqrt{x^(6)}* \sqrt{y^(2)}\\\\=10√(6)x^(3)y

Thus, the value of the expression is
10√(6)x^(3)y.

User Omer Anisfeld
by
5.7k points