Step-by-step explanation:
The x and y coordinates of the center of mass are:
xcm = ∫ x dm / m = ∫ x ρ dA / ∫ ρ dA
ycm = ∫ y dm / m = ∫ y ρ dA / ∫ ρ dA
Assuming uniform density, the center of mass is also the center of area.
xcm = ∫ x dA / ∫ dA = ∫ x y dx / A
ycm = ∫ y dA / ∫ dA = ∫ ½ y² dx / A
First, let's find the area:
A = ∫ y dx
A = ∫₀ᵃ (-h/a² x² + h) dx
A = -⅓ h/a² x³ + hx |₀ᵃ
A = -⅓ h/a² (a)³ + h(a)
A = ⅔ ha
Now, let's find the x coordinate of the center of mass:
xcm = ∫ x y dx / A
xcm = ∫₀ᵃ x (-h/a² x² + h) dx / (⅔ ha)
xcm = ∫₀ᵃ (-h/a² x³ + hx) dx / (⅔ ha)
xcm = (-¼ h/a² x⁴ + ½ hx²) |₀ᵃ / (⅔ ha)
xcm = (-¼ h/a² (a)⁴ + ½ h(a)²) / (⅔ ha)
xcm = (¼ ha²) / (⅔ ha)
xcm = ⅜ a
Next, we find the y coordinate of the center of mass:
ycm = ∫ y² dx / A
ycm = ∫₀ᵃ ½ (-h/a² x² + h)² dx / (⅔ ha)
ycm = ∫₀ᵃ ½ (h²/a⁴ x⁴ − 2h²/a² x² + h²) dx / (⅔ ha)
ycm = ½ (⅕ h²/a⁴ x⁵ − ⅔ h²/a² x³ + h² x) |₀ᵃ / (⅔ ha)
ycm = ½ (⅕ h²/a⁴ (a)⁵ − ⅔ h²/a² (a)³ + h² (a)) / (⅔ ha)
ycm = ½ (⁸/₁₅ h²a) / (⅔ ha)
ycm = ⅖ h