187k views
2 votes
Mass Center Determine the coordinates (x, y) of the center of mass of the area in blue in the figure below. Answers: x=(3)/(8)a and y=(2)/(5)h

Mass Center Determine the coordinates (x, y) of the center of mass of the area in-example-1
User Louissmr
by
4.0k points

1 Answer

6 votes

Step-by-step explanation:

The x and y coordinates of the center of mass are:

xcm = ∫ x dm / m = ∫ x ρ dA / ∫ ρ dA

ycm = ∫ y dm / m = ∫ y ρ dA / ∫ ρ dA

Assuming uniform density, the center of mass is also the center of area.

xcm = ∫ x dA / ∫ dA = ∫ x y dx / A

ycm = ∫ y dA / ∫ dA = ∫ ½ y² dx / A

First, let's find the area:

A = ∫ y dx

A = ∫₀ᵃ (-h/a² x² + h) dx

A = -⅓ h/a² x³ + hx |₀ᵃ

A = -⅓ h/a² (a)³ + h(a)

A = ⅔ ha

Now, let's find the x coordinate of the center of mass:

xcm = ∫ x y dx / A

xcm = ∫₀ᵃ x (-h/a² x² + h) dx / (⅔ ha)

xcm = ∫₀ᵃ (-h/a² x³ + hx) dx / (⅔ ha)

xcm = (-¼ h/a² x⁴ + ½ hx²) |₀ᵃ / (⅔ ha)

xcm = (-¼ h/a² (a)⁴ + ½ h(a)²) / (⅔ ha)

xcm = (¼ ha²) / (⅔ ha)

xcm = ⅜ a

Next, we find the y coordinate of the center of mass:

ycm = ∫ y² dx / A

ycm = ∫₀ᵃ ½ (-h/a² x² + h)² dx / (⅔ ha)

ycm = ∫₀ᵃ ½ (h²/a⁴ x⁴ − 2h²/a² x² + h²) dx / (⅔ ha)

ycm = ½ (⅕ h²/a⁴ x⁵ − ⅔ h²/a² x³ + h² x) |₀ᵃ / (⅔ ha)

ycm = ½ (⅕ h²/a⁴ (a)⁵ − ⅔ h²/a² (a)³ + h² (a)) / (⅔ ha)

ycm = ½ (⁸/₁₅ h²a) / (⅔ ha)

ycm = ⅖ h

User Thibaut Guirimand
by
4.3k points