Answer:
![\theta=45^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/pmqmemewca07jv7nt8bcolrsxgur3bh77y.png)
Explanation:
We are given that the equation of lines
![x+\sqrt 3y=1](https://img.qammunity.org/2021/formulas/mathematics/college/9lyg61ma5vvz5aok3kcgk0rge3h1c5dvv5.png)
![(1-\sqrt 3)x+(1+\sqrt 3)y=8](https://img.qammunity.org/2021/formulas/mathematics/college/xck9ce5z72rd8r4qqqli6twm1gtbx4wgau.png)
According to question
The vector perpendicular to the lines is given by
and
![(1-\sqrt 3)i+(1+\sqrt 3)j](https://img.qammunity.org/2021/formulas/mathematics/college/904fdrv7tlmh60roar0q3q8lncqihudgk5.png)
Therefore, the angle between two vectors is given by
![cos\theta=(a_1a_2+b_1b_2)/(√(a^2_1+b^2_1)√(a^2_2+b^2_2))](https://img.qammunity.org/2021/formulas/mathematics/college/d6waf6q972194ch4mnau5ohkarpymf6v8o.png)
Using the formula
![cos\theta=(1(1-\sqrt 3)+\sqrt 3(1+\sqrt 3))/(2* 2\sqrt 2)](https://img.qammunity.org/2021/formulas/mathematics/college/qn7rv7bfx5mg1fc0d0zi12ru1uusnzjxo1.png)
![cos\theta=(1-\sqrt 3+\sqrt 3+3)/(4\sqrt 2)=(1)/(\sqrt 2)](https://img.qammunity.org/2021/formulas/mathematics/college/qryijpzpdc9gvk6dhqcy4la9qghy1f2fb8.png)
![cos\theta=cos 45^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/college/32mxe09173i3zdna18btjcy5xhx8quffn6.png)
![\theta=45^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/pmqmemewca07jv7nt8bcolrsxgur3bh77y.png)
Hence, the acute angle between the lines is given by
![\theta=45^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/pmqmemewca07jv7nt8bcolrsxgur3bh77y.png)