214k views
11 votes
(x+3)(3x² - 5x - 10) multiply polynomial

2 Answers

9 votes

Answer:


3x^2 + 4x^2 - 25x - 30

Explanation:

Step 1: Distribute


(x + 3)(3x^2 - 5x - 10)


(x * 3x^2) + (x * (-5x)) + (x * (-10)) + (3 * 3x^2) + (3 * (-5x)) + (3 * (-10))


3x^3 - 5x^2 - 10x + 9x^2 - 15x - 30

Step 2: Combine like terms


3x^3 - 5x^2 + 9x^2 - 15x - 10x - 30


(3x^2) + (-5x^2 + 9x^2) + (-15x - 10x) + (-30)


3x^2 + 4x^2 - 25x - 30

Answer:
3x^2 + 4x^2 - 25x - 30

User Arun NS
by
5.5k points
6 votes

Answer:


  • \boxed{\sf{3x^3+4x^2-25x-30}}

Explanation:


\underline{\text{SOLUTION:}}

To isolate the term of x from one side of the equation, you must multiply by a polynomial.


\underline{\text{GIVEN:}}


:\Longrightarrow: \sf{(x+3)(3x^2 - 5x - 10)}

You have to solve with parentheses first.


:\Longrightarrow \sf{x\cdot \:3x^2+x\left(-5x\right)+x\left(-10\right)+3\cdot \:3x^2+3\left(-5x\right)+3\left(-10\right)}

Solve.


\sf{x*3x=3x^3}

x(-5x)=-5x²


\sf{x(-10)=-10x}

3*3x²=9x²

3(-5x)=-15x

3(-10)=-30

Then, rewrite the problem down.


\sf{3x^3-5x^2-10x+9x^2-15x-30}

Combine like terms.


\Longrightarrow: \sf{3x^3-5x^2+9x^2-10x-15x-30}

Add/subtract the numbers from left to right.

-5x²+9x²=4x²


\Longrightarrow: \sf{3x^3+4x^2-10x-15x-30}

Solve.


\sf{-10x-15x=-25x}

Then rewrite the problem.


\Longrightarrow: \boxed{\sf{3x^3+4x^2-25x-30}}

  • Therefore, the correct answer is 3x³+4x²-25x-30.

I hope this helps! Let me know if you have any questions.

User Rahul Tank
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.