214k views
11 votes
(x+3)(3x² - 5x - 10) multiply polynomial

2 Answers

9 votes

Answer:


3x^2 + 4x^2 - 25x - 30

Explanation:

Step 1: Distribute


(x + 3)(3x^2 - 5x - 10)


(x * 3x^2) + (x * (-5x)) + (x * (-10)) + (3 * 3x^2) + (3 * (-5x)) + (3 * (-10))


3x^3 - 5x^2 - 10x + 9x^2 - 15x - 30

Step 2: Combine like terms


3x^3 - 5x^2 + 9x^2 - 15x - 10x - 30


(3x^2) + (-5x^2 + 9x^2) + (-15x - 10x) + (-30)


3x^2 + 4x^2 - 25x - 30

Answer:
3x^2 + 4x^2 - 25x - 30

User Arun NS
by
5.1k points
6 votes

Answer:


  • \boxed{\sf{3x^3+4x^2-25x-30}}

Explanation:


\underline{\text{SOLUTION:}}

To isolate the term of x from one side of the equation, you must multiply by a polynomial.


\underline{\text{GIVEN:}}


:\Longrightarrow: \sf{(x+3)(3x^2 - 5x - 10)}

You have to solve with parentheses first.


:\Longrightarrow \sf{x\cdot \:3x^2+x\left(-5x\right)+x\left(-10\right)+3\cdot \:3x^2+3\left(-5x\right)+3\left(-10\right)}

Solve.


\sf{x*3x=3x^3}

x(-5x)=-5x²


\sf{x(-10)=-10x}

3*3x²=9x²

3(-5x)=-15x

3(-10)=-30

Then, rewrite the problem down.


\sf{3x^3-5x^2-10x+9x^2-15x-30}

Combine like terms.


\Longrightarrow: \sf{3x^3-5x^2+9x^2-10x-15x-30}

Add/subtract the numbers from left to right.

-5x²+9x²=4x²


\Longrightarrow: \sf{3x^3+4x^2-10x-15x-30}

Solve.


\sf{-10x-15x=-25x}

Then rewrite the problem.


\Longrightarrow: \boxed{\sf{3x^3+4x^2-25x-30}}

  • Therefore, the correct answer is 3x³+4x²-25x-30.

I hope this helps! Let me know if you have any questions.

User Rahul Tank
by
4.6k points