151k views
2 votes
Find the value of the following expression: (2^8 ⋅ 5^−5 ⋅ 19^0)^−2 ⋅ 5 to the power of negative 2 over 2 to the power of 3, whole to the power of 4 ⋅ 2^28 (5 points) Write your answer in simplified form. Show all of your steps.

1 Answer

5 votes

Answer:


\large\boxed{(5^2\cdot57)/(2^(26))=(1425)/(67108864)}

Explanation:


\left(2^8\cdot5^(-5)\cdot19^0\right)^(-2)\cdot\left((5^(-2))/(2^3)\right)^4\cdot228\\\\\text{use}\ a^(-n)=(1)/(a^n)\ \text{and}\ a^0=1\ \text{and}\ (a^n)^m=a^(nm)\\\\=\left(2^8\cdot(1)/(5^5)\cdot1\right)^(-2)\cdot\left(((1)/(5^2))/(2^3)\right)^4\cdot228=\left((2^8)/(5^5)\right)^(-2)\cdot\left((1)/(2^35^2)\right)^4\cdot228


=((2^8)^(-2))/((5^5)^(-2))\cdot(1^4)/((2^3)^4(5^2)^4)\cdot228=(2^(-16))/(5^(-10))\cdot(1)/(2^(12)5^8)\cdot228\\\\\text{use}\ a^n=(1)/(a^(-n))\to(1)/(a^n)=a^(-n)\\\\=2^(-16)\cdot5^(10)\cdot2^(-12)\cdot5^(-8)\cdot228\\\\\text{use}\ a^n\cdot a^m=a^(n+m)\\\\=2^(-16+(-12))\cdot5^(10+(-8))\cdot228=2^(-28)\cdot5^2\cdot228\\\\=2^(-28)\cdot5^2\cdot4\cdot57=2^(-28)\cdot5^2\cdot2^2\cdot57=2^(-28+2)\cdot5^2\cdot57\\\\=2^(-26)\cdot5^2\cdot57=(5^2\cdot57)/(2^(26))


\large\boxed{(5^2\cdot57)/(2^(26))=(1425)/(67108864)}

User Rgthree
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories