107k views
20 votes
Form a quadratic function f(x) for which f(1)=0, f(−1)=−4, and f(2)=5.

User Tjhazel
by
3.7k points

1 Answer

6 votes

Answer:


f(x)=x^2+2x-3

Explanation:


\textsf{General form of a quadratic function}:f(x)=ax^2+bx+c

Equation 1


\begin{aligned}f(1) &=0\\ \implies a(1)^2+b(1)+c &=0\\ a+b+c &=0 \end{aligned}

Equation 2


\begin{aligned}f(-1) &=-4\\ \implies a(-1)^2+b(-1)+c &=-4\\ a-b+c &=-4 \end{aligned}

Equation 3


\begin{aligned}f(2) &=5\\ \implies a(2)^2+b(2)+c &=5\\ 4a+2b+c &=5 \end{aligned}

Add Equation 1 and Equation 2:


\begin{array}{r l}a+b+c & =0 \\+\quad a-b+c & =-4 \\\cline{1-2} 2a+2c & =-4 \end{array}


\implies a+c=-2

Substitute
a+c=-2 into Equation 1 and solve for b:


\begin{aligned}\implies a+b+c &=0\\ b-2 &=0\\ b &=2\end{aligned}

Substitute
a=-2-c and
b=2 into Equation 3 and solve for c:


\begin{aligned} \implies 4a+2b+c&=5\\ 4(-2-c)+2(2)+c &=5\\-8-4c+4+c &=5\\ -3c &=9\\ c &=-3\end{aligned}

Substitute found value of c into
a=-2-c and solve for a:


\implies a=-2-(-3)=1

Therefore, a = 1, b = 2 and c = -3

Substitute the found values into the general form of a quadratic function to form the final equation:


f(x)=x^2+2x-3

User Keith Yong
by
3.7k points