Answer:
![f(x)=x^2+2x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/2i51by7pl54c7vositxmmm5yzlwfga0llm.png)
Explanation:
![\textsf{General form of a quadratic function}:f(x)=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/b5en6bso16de6tkzc6tziqycqp5if2sju8.png)
Equation 1
![\begin{aligned}f(1) &=0\\ \implies a(1)^2+b(1)+c &=0\\ a+b+c &=0 \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/20rgh3a6c77mq7up7t33gabmzrtyrnyb23.png)
Equation 2
![\begin{aligned}f(-1) &=-4\\ \implies a(-1)^2+b(-1)+c &=-4\\ a-b+c &=-4 \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qrvbbic0ml0exzdgohnu5p1w8fd6z9jxr8.png)
Equation 3
![\begin{aligned}f(2) &=5\\ \implies a(2)^2+b(2)+c &=5\\ 4a+2b+c &=5 \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hr0mnvt15kbblr9zwrdn8ywi02he89aa34.png)
Add Equation 1 and Equation 2:
![\begin{array}{r l}a+b+c & =0 \\+\quad a-b+c & =-4 \\\cline{1-2} 2a+2c & =-4 \end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s2j0f76busk9e2u6vemxh9s831b1sxmadk.png)
![\implies a+c=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/arias9i6jwtide24ayzh6clxmviihpy78s.png)
Substitute
into Equation 1 and solve for b:
![\begin{aligned}\implies a+b+c &=0\\ b-2 &=0\\ b &=2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ynt9yv8q9vgvr5qcucap0zdai4invi06ed.png)
Substitute
and
into Equation 3 and solve for c:
![\begin{aligned} \implies 4a+2b+c&=5\\ 4(-2-c)+2(2)+c &=5\\-8-4c+4+c &=5\\ -3c &=9\\ c &=-3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w4ieupm25nm9sxqzrppdxcbzfleyma8eco.png)
Substitute found value of c into
and solve for a:
![\implies a=-2-(-3)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xg67iz8dmz63wdiz0iqd4oh26i6k6t39rx.png)
Therefore, a = 1, b = 2 and c = -3
Substitute the found values into the general form of a quadratic function to form the final equation:
![f(x)=x^2+2x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/2i51by7pl54c7vositxmmm5yzlwfga0llm.png)