9.8k views
0 votes
P and q are complex numbers such that |p|=7√2 and |p+q|=12√3 .

On what interval must |q| fall on?



A [7√6/24,[infinity])



B [12√3−7√2,[infinity])



C [12√3+7√2,[infinity])



D [4√6/7,[infinity])

User Sanique
by
4.3k points

1 Answer

4 votes

Answer:

Option B is correct

Explanation:

Given:
\left | p \right |=7√(2)\,,\,\left | p+q \right |=12√(3)

To find: interval on which
\left | q \right | must fall

Solution:


\left | p \right |=7√(2)\\-7√(2)\leq p\leq 7√(2)\,\,(i)


\left | p+q \right |=12√(3)\\-12√(3)\leq p+q\leq 12√(3)\,\,(ii)

Subtract (ii) from (i)


-12√(3)+7√(2)\leq p+q-p\leq 12√(3)-7√(2)\\-12√(3)+7√(2)\leq q\leq 12√(3)-7√(2)\\\left | q \right |=12√(3)-7√(2)

So,
\left | q \right | must fall in interval
[12√(3)-7√(2),\infty)

Therefore, option B is correct.

User Liang
by
4.9k points