Answer: see answers below
Explanation:
y = A cos (Bx - C) + D
- A is the amplitude
- Period = 2π/B → B = 2π/Period
- Phase shift = C/B
- D is the vertical shift (aka midline)
Given: A = 5/2, B = π/6, C = 0, D = 13/2
1) midline (D) ± amplitude (A) = Max & Min
Max: 13/2 + 5/2 = 18/2 = 9
Min: 13/2 - 5/2 = 8/2 = 4
2) Midline (D) is given as 13/2 = 6.5
3) Period = 2π/B = 2π/(π/6) = 12
4) Formula is given as: y = 5/2 cos (π/6)x + 13/2
5) change the coordinates of y = cos (x) and as follows:
- x-value: add C then divide by B
- y-value: multiply by A then add D
Note that A = 5/2, B = π/6, C = 0, D = 13/2
![\begin{array}ccc\underline{\qquad x\qquad}&\underline{\qquad y\qquad}&&\underline{\quad (x+C)/ B\quad}&\underline{\quad Ay+D\quad}\\0&1&&0&9&maximum\\\pi/2&0&&3&6.5&midline\\\pi&-1&&6&4&minimum\\3\pi/2&0&&9&6.5&midline\\2\pi&1&&12&9&maximum\\\end{array}]()