Answer:
2(3-√13) is the answer
Explanation:
Given that,
x = \frac{3 - \sqrt{13} }{2}
or, \frac{1}{x} = \frac{2}{3 - \sqrt{13} } (Taking reciprocal on both sides)
We know that,
(a + b)² = a² + b² + 2ab
or, (x \ + \frac{1} {x})^{2} = {x}^{2} + \frac{1}{x {}^{2} } + 2
or, {x}^{2} + \frac{1}{x {}^{2} } = (x \ + \frac{1}{x })^{2} - 2
Now,
or, {x}+ \frac{1}{x } = \frac{3 - \sqrt{13} }{2} + \frac{2}{3 - \sqrt{13} }
or, (3 - \sqrt{13 {})^{2} } + 4
2(3-√13) is the answer
If you didn't understand the frac etc... then I'll attach the f ans file.