Answer:
Option(B) is the correct answer to the given question.
Step by Step Explanation
We know that
![A\ =\ P \ *(\ 1+\ (r)/(n) \ ) ^(nt)](https://img.qammunity.org/2021/formulas/mathematics/college/1ix67k9cv4w8in6etz5aajfe57c22hmow1.png)
Here A=amount
r=15.98%=0.1598
n=365
t=1
Putting these values into the equation
![A\ =\ P \ *(\ 1+\ (0.1598)/(365) \ ) ^(365)](https://img.qammunity.org/2021/formulas/mathematics/college/dv2dv5t1zat5inaow7d2r4thigd0xsukag.png)
![A\ =\ P \ *(\ 1+\ 0.000437) ^\ { 365}](https://img.qammunity.org/2021/formulas/mathematics/college/v4nhp57iarv724prkukzhowpw5eal533i3.png)
![A\ =\ P \ *(\ 1.000437 ) ^(365)](https://img.qammunity.org/2021/formulas/mathematics/college/6n0eekywx2880zi94xzkhw860m77awt2xj.png)
![A\ =1.17288 P](https://img.qammunity.org/2021/formulas/mathematics/college/1y6lctwj8khruulg26wofa6hyyo7q4due5.png)
Now we find the interest
I=
![1.17288P\ -P\\=\ 0.17288P\\\ ~ 0.1720P](https://img.qammunity.org/2021/formulas/mathematics/college/p8ooeatgg50s0x7ii88d8um995asy1l03l.png)
Therefore effective interest rate of the last year can be determined by
![(0.1720P)/(P)](https://img.qammunity.org/2021/formulas/mathematics/college/mhj47sj1mh9esvd6t71x7h6zlz1blytgj8.png)
=0.1720 *100
=17.20%