68.5k views
24 votes
Solve it in form of cos and sin pls​

Solve it in form of cos and sin pls​-example-1

1 Answer

1 vote


\text{L.H.S}\\\\=(\cot A)/(1- \tan A) + (\tan A)/(1- \cot A)\\\\\\=\frac{\tfrac{\cos A}{\sin A}}{1- \tfrac{\sin A}{\cos A}} + \frac{\tfrac{\sin A}{\cos A}}{1-\tfrac{\cos A}{\sin A}}\\\\\\=\frac{\tfrac{\cos A}{\sin A}}{\tfrac{\cos A- \sin A}{\cos A}} + \frac{\tfrac{\sin A}{\cos A}}{\tfrac{\sin A - \cos A}{\sin A}}\\\\\\=(\cos^2 A)/(\sin A(\cos A-\sin A)) + (\sin^2 A)/(\cos A(\sin A - \cos A))\\\\\\


=(\cos^2 A)/(\sin A(\cos A-\sin A)) - (\sin^2 A)/(\cos A(\cos A - \cos A))\\\\\\=\frac 1{\cos A - \sin A} \left( (\cos^2 A)/(\sin A) - (\sin^2 A)/(\cos A)\right)\\\\\\=\frac 1{\cos A - \sin A} \left((\cos^3 A - \sin^3 A)/(\sin A \cos A) \right)\\\\\\=\frac 1{\cos A - \sin A} \left[((\cos A - \sin A)(\cos^2 A + \sin^2 A + \sin A \cos A))/(\sin A \cos A) \right]\\\\\\=(\cos^2 A + \sin^2 A+\sin A \cos A)/(\sin A \cos A)\\\\\\


=(\cos^2 A)/(\sin A \cos A)+(\sin^2 A)/(\sin A \cos A)+(\sin A \cos A)/(\sin A \cos A)\\\\\\=(\cos A)/(\sin A) + (\sin A)/(\cos A) + 1\\\\\\=\cot A + \tan A + 1\\\\\\=1 + \tan A + \cot A\\\\=\text{R.H.S}\\\\\text{Proved.}

User Davidforneron
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories