Answer:
= 8.2*10⁻¹²
Step-by-step explanation:
Probability of finding an electron to occupy a state of energy, can be expressed by using Boltzmann distribution function
![f(E) = exp(-(E-E_f)/(K_BT) )](https://img.qammunity.org/2021/formulas/physics/college/8tuh817yvpdbjyo721ryms3p60ppfclv8u.png)
From the given data, fermi energy lies half way between valence and conduction bands, that is half of band gap energy
![E_f = (E_g)/(2)](https://img.qammunity.org/2021/formulas/physics/college/h46lnl85em6w62efdrftk7b84s7hyni2dt.png)
Therefore,
![f(E) = exp(-(E-(E_g)/(2) )/(K_BT) )](https://img.qammunity.org/2021/formulas/physics/college/umpcc8nujz3gaj9ycjh9e79ckwyy6pmqus.png)
Using boltzman distribution function to calculate the ratio of number of electrons in the conduction bands of those electrons in the valence bond is
![(n_(con))/(n_(val)) =(exp(-([E_c-E_g/2])/(K_BT) ))/(exp(-([E_v-E_fg/2)/(K_BT) ))](https://img.qammunity.org/2021/formulas/physics/college/u5kvmlnkwaqtei9rohi5ansr57nzt0wgss.png)
![= exp((-(E_c-E_v)/(K_BT) )\\\\=exp((-(0.66eV))/((8.617*10^-^5eV/K)(300K)) )\\\\=8.166*10^-^1^2\approx8.2*10^(-12)](https://img.qammunity.org/2021/formulas/physics/college/8eo9d4ww0mjpcx9ls9dqsdt68w135ofbvj.png)