88.4k views
1 vote
Help! Stuck on this question (calculus)

If
y=(3)/(x^2)


work out
(dx)/(dy)

1 Answer

4 votes

Answer:


\displaystyle (dx)/(dy) = \frac{3\sqrt{(3)/(y)}(y - 1)}{6y}

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle y = (3)/(x^2)

Step 2: Differentiate

  1. Rewrite Function:
    \displaystyle yx^2 = 3
  2. [Implicit Differentiation] Basic Power Rule [Product Rule]:
    \displaystyle y^(1 - 1)x^2 + y(2x^(2 - 1))(dx)/(dy) = 3
  3. Simplify:
    \displaystyle x^2 + y(2x)(dx)/(dy) = 3
  4. Isolate
    \displaystyle (dx)/(dy) term:
    \displaystyle y(2x)(dx)/(dy) = 3 - x^2
  5. Isolate
    \displaystyle (dx)/(dy):
    \displaystyle (dx)/(dy) = (3 - x^2)/(2xy)
  6. Substitute in x²:
    \displaystyle (dx)/(dy) = (3 - (3)/(y))/(2xy)
  7. Simplify:
    \displaystyle (dx)/(dy) = (3(y - 1))/(2xy^2)
  8. Substitute in x:
    \displaystyle (dx)/(dy) = \frac{3(y - 1)}{2y^2(\sqrt{(3)/(y)})}
  9. Simplify:
    \displaystyle (dx)/(dy) = \frac{3\sqrt{(3)/(y)}(y - 1)}{6y}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Hassen Zouari
by
4.2k points