88.4k views
1 vote
Help! Stuck on this question (calculus)

If
y=(3)/(x^2)


work out
(dx)/(dy)

1 Answer

4 votes

Answer:


\displaystyle (dx)/(dy) = \frac{3\sqrt{(3)/(y)}(y - 1)}{6y}

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle y = (3)/(x^2)

Step 2: Differentiate

  1. Rewrite Function:
    \displaystyle yx^2 = 3
  2. [Implicit Differentiation] Basic Power Rule [Product Rule]:
    \displaystyle y^(1 - 1)x^2 + y(2x^(2 - 1))(dx)/(dy) = 3
  3. Simplify:
    \displaystyle x^2 + y(2x)(dx)/(dy) = 3
  4. Isolate
    \displaystyle (dx)/(dy) term:
    \displaystyle y(2x)(dx)/(dy) = 3 - x^2
  5. Isolate
    \displaystyle (dx)/(dy):
    \displaystyle (dx)/(dy) = (3 - x^2)/(2xy)
  6. Substitute in x²:
    \displaystyle (dx)/(dy) = (3 - (3)/(y))/(2xy)
  7. Simplify:
    \displaystyle (dx)/(dy) = (3(y - 1))/(2xy^2)
  8. Substitute in x:
    \displaystyle (dx)/(dy) = \frac{3(y - 1)}{2y^2(\sqrt{(3)/(y)})}
  9. Simplify:
    \displaystyle (dx)/(dy) = \frac{3\sqrt{(3)/(y)}(y - 1)}{6y}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Hassen Zouari
by
7.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories