15.1k views
2 votes
Find the general solution of the simple homogeneous "system" below, which consists of a single linear equation. Give your answer as a linear combination of vectors. Let x2 and x3 be free variables. 3x1 - 6x2 9x3

1 Answer

4 votes

Answer:


= \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right]

Explanation:

Given: 3x1 - 6x2 + 9x3 = 0

x2 and x3 are free variables

We have:

3x1 = 6x2 - 9x3

divide all sides by 3, we have:

x1 = 2x2 - 3x3

Finding the general solution, we have:


\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{ccc}2x_2 - 3x_3\\x_2\\x_3\end{array}\right]


= \left[\begin{array}{ccc}2x_2\\x_2\\0\end{array}\right] + \left[\begin{array}{ccc}-3x_3\\0\\x_3\end{array}\right]


= x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right]

The general solution is


= \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right]

User Phuoc
by
4.6k points