Answer:
(The diagram of the question is given in Attachment 1)
The largest load which can be applied is:
P=67.62 kN
Step-by-step explanation:
Make a Free body Diagram:
All the forces are shown in the diagram in Attachment 2.
Analyze the equilibrium of Joint C in Figure (a):
∑ F(y)= 0 (Upwards is positive)
![F_(BC)sin\theta-P=0\\(4)/(5)F_(BC) - P=0\\F_(BC)=(5)/(4)P\\\\F_(BC)=1.25P](https://img.qammunity.org/2021/formulas/engineering/college/gmsidl5a2bu6kcl2e74apkfxd8dr65wv82.png)
Substitute F(BC) in Figure (b):
∑ F(x)= 0 (Towards Right is positive)
![N_(a-a) - F_(BC)cos\theta=0\\N_(a-a)-1.25P((3)/(5))=0\\N_(a-a)=0.75P](https://img.qammunity.org/2021/formulas/engineering/college/sc4w9lxheee0m0vas3k2v8ool91y5ychop.png)
∑ F(y)= 0 (Upwards is positive)
![F_(BC)sin\theta- V_(a-a)= 0\\((4)/(5))1.25P-V_(a-a)=0\\V_(a-a)=P](https://img.qammunity.org/2021/formulas/engineering/college/nr3xxm5czwci7a4c3ma3vrlkbsz36osu00.png)
Find Cross Sectional Area:
The cross sectional area of a-a:
![A_(a-a)= ((0.026)(0.026))/(3/5)\\A_(a-a)= 1.127\cdot10^(-3)](https://img.qammunity.org/2021/formulas/engineering/college/q6ctghpome3lvr0ynnk11e7eysf8zac2i7.png)
Find P from Normal Stress Equation:
σ = N(a-a)/A(a-a)
Substitute values:
![160\cdot10^6=(0.75P)/(1.127\cdot10^(-3))\\P=240.42\cdot10^3 N\\P=240.42 kN](https://img.qammunity.org/2021/formulas/engineering/college/nlr5t4z2zhf8kb65ibg5gk70mjhtngxxcu.png)
Find P from Shear Stress Equation:
Т= V(a-a)/A(a-a)
Substitute values:
![60\cdot10^6=(P)/(1.127\cdot10^(-3))\\P=67.62\cdot10^(3)N\\P=67.62kN](https://img.qammunity.org/2021/formulas/engineering/college/dactp1v6iumk4oh4gyvcj4q34gdhpcztks.png)
Results:
To satisfy both the condition, we have to choose the lower value of P.
P=67.62 kN