Answer:
![\mathbf{t_f = 1436.96 \ sec }](https://img.qammunity.org/2021/formulas/engineering/college/hxveq34u2djq3jis0y79y63m4kk1degrv2.png)
Step-by-step explanation:
Given that :
The strength and stability of tires may be enhanced by heating both sides of the rubber ( 0.14 W/m·K, 6.35 × 10^-8m^2/s)
i.e
k = 0.14 W/mK
∝ = 6.35 × 10⁻⁸ m²/s
L = 0.01 m
![B_1 = (hL)/(k) \\ \\ B_1 = (200*0.01)/(0.14) \\ \\ B_1 = 14.2857](https://img.qammunity.org/2021/formulas/engineering/college/q7fdapirdkymwn91slrddzln45saw1mkxc.png)
We cannot use the model of Lumped Capacitance; SO Let assume that Fourier Number
![F_o > 0.2](https://img.qammunity.org/2021/formulas/engineering/college/xxlngkzv3q08bsjp7f38lvjf37scfhtcb8.png)
⇒
![(T_o - T_ \infty )/(T_i - T_ \infty) = C_1 exp (- \zeta_i^2 *F_o)](https://img.qammunity.org/2021/formulas/engineering/college/1ekhqpk1c0ho26u4v3s67wrb6d53qcdsf9.png)
From Table 5.1 ; at
= 14.2857
![C_1 = 1.265 \\ \\ \zeta_1 = 1.458 \ rad](https://img.qammunity.org/2021/formulas/engineering/college/6kuyaaf4m4x1yditmgehhulc111tov76u1.png)
![(170-200)/(35-200) = 1.265 exp [ - (1.458)^2* ( \alpha t_f)/(L^2)]](https://img.qammunity.org/2021/formulas/engineering/college/m5kzl0rjsh5xbfaq66kjcluwf7lr58hvpj.png)
![In ( (0.1818)/(1.265)) = (-1.458^2*6.35*10^(-8)*t_f)/(0.01^2)](https://img.qammunity.org/2021/formulas/engineering/college/ammuq8y15bxjzkvfbewmp96jl289qktj96.png)
![-1.9399=-0.001350 *t_f](https://img.qammunity.org/2021/formulas/engineering/college/v6yh735xyg80upt4enr2881hk7mp669guu.png)
![t_f = (-1.9399)/(-0.001350)](https://img.qammunity.org/2021/formulas/engineering/college/rj693lih3ck3aa4c35dlshx2o851gh22ha.png)
![\mathbf{t_f = 1436.96 \ sec }](https://img.qammunity.org/2021/formulas/engineering/college/hxveq34u2djq3jis0y79y63m4kk1degrv2.png)