Answer:
![t \approx 36.1\,min](https://img.qammunity.org/2021/formulas/mathematics/college/k63cnn23mjr4d5xhxk86qqdirm2hrg4flk.png)
Explanation:
The time constant for the isotope decay is:
![\tau = (8\min)/(\ln 2)](https://img.qammunity.org/2021/formulas/mathematics/college/w62zaw36d7xla1w22kjaw7hbc4kto0eo9q.png)
![\tau \approx 11.542\,min](https://img.qammunity.org/2021/formulas/mathematics/college/xrxip1bgaxhzzulo3hfkbvybtcjd1ljdul.png)
Now, the decay of the isotope is modelled after the following expression:
![m (t) = m_(o)\cdot e^{-(t)/(\tau) }](https://img.qammunity.org/2021/formulas/mathematics/college/h232125w2blicdm4u7yawmqt9vrpt2czm2.png)
The time is now cleared with some algebraic handling:
![(m(t))/(m_(o)) = e^{-(t)/(\tau) }](https://img.qammunity.org/2021/formulas/chemistry/middle-school/un17xotd3mxo60o9ndt62nhavd6bxqagzy.png)
![t = -\tau \cdot \ln (m(t))/(m_(o))](https://img.qammunity.org/2021/formulas/chemistry/middle-school/2uk3wnzyvntq0lrjilm6plcwtqt2l2nsr3.png)
Finally, the time need for the element X to decay to 43 grams is:
![t = - (11.542\,min)\cdot \ln\left((43\,g)/(980\,g) \right)](https://img.qammunity.org/2021/formulas/mathematics/college/oelqqtne9lu6gpawyqd2xgc0uawl2dxp7c.png)
![t \approx 36.1\,min](https://img.qammunity.org/2021/formulas/mathematics/college/k63cnn23mjr4d5xhxk86qqdirm2hrg4flk.png)