Answer:
Cosθ = 0.5145
Sinθ = 0.8575
Secθ = 1.9436
tanθ = 1.667
Explanation:
From the figure attached,
Point P(-3, 5) is on the terminal side and AB is the initial side of the angle PAB.
If m∠PAB = θ
AB =
![\sqrt{(3)^(2)+(5)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/trfu4cox32t6w39k2y84nakeg3qiu4gw9e.png)
=
![√(34)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jdj4xc3gev333fio5z12z957f58dlvnmnb.png)
= 5.831
Then Cosθ =
=
![(3)/(5.831)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4tu4y3wdl6p9ifdgcf7qn1d2v42zfyrncf.png)
Cosθ = 0.5145
Sinθ =
Sinθ =
![(5)/(5.831)](https://img.qammunity.org/2021/formulas/mathematics/high-school/asldauzaq2zwrwlq8ixvln8rrci3zyx7rp.png)
Sinθ = 0.8575
Secθ =
![\frac{1}{\text{Cos}\theta}](https://img.qammunity.org/2021/formulas/mathematics/high-school/mnmy38hqdinik44u5gxt7ge47c571h13uv.png)
Secθ =
![(1)/(0.5145)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xfuz659bkgr4zqltuxk4ja2vwmol485dhu.png)
Secθ = 1.944
tanθ =
![(PB)/(AB)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g3ebngn0eqzieaczlglw5k32wko19yk2n6.png)
tanθ =
![(5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3wv8b29p5rggdyha5l2asvt9rfbndkeiiq.png)
tanθ = 1.667