Explanation:
Tangent is equal to sine over cosine. Cotangent is equal to cosine over sine. Therefore:
![cos(x)( (sin(x))/(cos(x)) + (cos(x))/(sin(x)) )](https://img.qammunity.org/2023/formulas/mathematics/college/n5hdkjnwlcgbu68vgptvyuww1025s0xszq.png)
Distribute the cos(x) into the sum to get:
![sin(x) + \frac{ {cos(x)}^(2) }{sin(x)}](https://img.qammunity.org/2023/formulas/mathematics/college/475kpgrexbhitngza25m38qcirwuih2vjk.png)
Get a common denominator by multiplying the first term by sine over sine to get:
![\frac{ {sin(x)}^(2) }{sin(x)} + \frac{ {cos(x)}^(2) }{sin(x)}](https://img.qammunity.org/2023/formulas/mathematics/college/lbo2gwigsoqt9o8ucfrjldocbx7dfptspe.png)
The numerator adds to equal 1 due to a common trigonometric identity. Therefore the only remaining term is:
![(1)/(sin(x))](https://img.qammunity.org/2023/formulas/mathematics/college/1wal2tdglm6fzjyopfmaikzzkoptcftoad.png)