Answer:
The correct answer is option
![d.\ x=-i, i, 3 √(5)\ or\ -3 √(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9kq9wvryz6oixvctoe8jjx1cqk237r1p5y.png)
Explanation:
The given equation has a degree 4 (Highest power of
):
is the given equation which can be written as:
![(x^2)^2-44x^2-45=0 ...... (1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/284cox54cqcaim52bkkdk1tbp3mdfl54u3.png)
Let
and putting it in equation (1):
![t^2-44t-45=0 \\](https://img.qammunity.org/2021/formulas/mathematics/high-school/hx4yp7rcmagl9zv03rwpimbngmnj8stg2c.png)
Solving the above quadratic equation in variable
:
![\Rightarrow t^2-45t+t-45=0 \\\Rightarrow t(t-45)+1(t-45)=0\\\Rightarrow (t+1)(t-45)=0\\\Rightarrow t =-1\ or\ 45](https://img.qammunity.org/2021/formulas/mathematics/high-school/hi6lcl2pkw9tnvn69gpd4a6rrjbkj8mt26.png)
We know that
So,
![x^(2) =-1\ or\ x^(2)= 45](https://img.qammunity.org/2021/formulas/mathematics/high-school/k3l2likrlvz510eh67mxkkg6u2ujehs0i0.png)
1. Solving
![x^(2) =-1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/572f7hapbxcx2caio5swj6e35b52a5v0xx.png)
![\Rightarrow x = +√(-1)\ or\ -√(-1)\\\Rightarrow x = i\ or\ -i](https://img.qammunity.org/2021/formulas/mathematics/high-school/r02yinz00297j6cjwdqqeq6zlarfpln2fr.png)
2. Solving
![x^(2) =45](https://img.qammunity.org/2021/formulas/mathematics/high-school/jihxhhm8f2pq6h0x5dqhpgokfgg1s5vt5k.png)
![\Rightarrow x = +√(45)\ or\ -√(45)\\\Rightarrow x = 3√(5)\ or\ -3√(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/604ilzavhcw0cpx1tg7l2upxw3wum7cmzs.png)
Hence, correct answer is:
![x=-i, i, 3 √(5)\ or\ -3 √(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/igje21sv3rq1aug903tg5p7s6fv5f3o1w3.png)