Answer:
The equation of the hyperbola is:
![(x^(2))/(76) - (y^(2))/(12) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/7w08hn3gtt815wtxvh4gbcp6n1axuxpbdx.png)
Explanation:
The equation of a hyperbola centered in the origin in standard form is:
![(x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/y6ulxclg011ac2l8zvzy8kflcm5odu1n0v.png)
The distance between both vertexes is equal to:
![2\cdot b = \sqrt{(0-0)^(2)+(√(12)+√(12))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/mwd2ljr9yfd7lgysd5unodyb0u3392kv57.png)
![2\cdot b = 2\cdot √(12)](https://img.qammunity.org/2021/formulas/mathematics/college/mv5pr0iog6nh1otprm12jbkn1gy3z55zac.png)
![b = √(12)](https://img.qammunity.org/2021/formulas/mathematics/college/o9gldqyidmxh6elugxmxkqc6xzc73sha02.png)
Now, the distance between any of the vertexes and origin is:
![c = \sqrt{(0-0)^(2)+[(4-(-4)]^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/btaoaj7f3stxe2d23gs874r481wxpr2nzk.png)
![c = 8](https://img.qammunity.org/2021/formulas/mathematics/college/32scbillwqp6czubsgk1wws70ky4m0aeno.png)
The remaining parameter of the hyperbola is determined by the following Pythagorean expression:
![c^(2) = a^(2) - b^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/msqwwk39lgyn1wd3jstrjuk6722rekv0ew.png)
![a = \sqrt{c^(2)+b^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/svud9w2ar4cc426et3iamvt3zkau4a3ms7.png)
![a = √(64+12)](https://img.qammunity.org/2021/formulas/mathematics/college/d2frfk6q3b1895k5nuneoqjtnr7zpkfrtg.png)
![a = √(76)](https://img.qammunity.org/2021/formulas/mathematics/college/wxv8i365ytoak5h30039f03cedj641uanf.png)
The equation of the hyperbola is:
![(x^(2))/(76) - (y^(2))/(12) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/7w08hn3gtt815wtxvh4gbcp6n1axuxpbdx.png)