Answer:
![$$\sum_(n=1)^(10) -3(-1)^(n) \hspace{3}2^(n-1) $$](https://img.qammunity.org/2021/formulas/mathematics/high-school/zjllhixggzt1kq2rfzncm1f1s5rpobwiup.png)
![n\in N](https://img.qammunity.org/2021/formulas/mathematics/high-school/2ml3pbtdbcxrra9goexnkxrg3d1rsgic6z.png)
Explanation:
First, as you can see, the sequence is alternating its sign everytime, so you can deduce this term:
![(-1)^(n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4o8x0z6tydyey2wgcph1apudedfwq23upz.png)
The sequence start from 3, and the following terms are the product between 3 and
. Take a look:
For n=1
![3*2^(1-1) =3*2^(0) =3*1=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/vq3z9fydxk77d4ut8s2n9owmk6l7joy7q8.png)
For n=2
![3*2^(2-1) =3*2^(1) =3*2=6](https://img.qammunity.org/2021/formulas/mathematics/high-school/ci5ujh8rykeplwi3cgsko3p0omt89x7ld9.png)
And so on...
Let's verify the formula including all terms:
Since the sequence start from 3, we must change the 3 for -3. Because
is always negative for the first term:
For n=1
![(-1)^(1) \hspace{3}-3*2^(1-1) =(-1)-3*2^(0) =(-1)-3*1=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/2fhqpl2gbmhhkg7v6igz4khgke063m1ptc.png)
For n=2
![(-1)^(2) \hspace{3}-3*2^(2-1) =(1)-3*2^(1) =(1)-3*2=-6](https://img.qammunity.org/2021/formulas/mathematics/high-school/lrn2exnr7ecp24f5sru4x57myjj4ky7yxz.png)
For n=3
![(-1)^(3) \hspace{3}-3*2^(3-1) =(-1)-3*2^(2) =(-1)-3*4=12](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8awn8ovxmvw6on8wai3myh0deyuku6gwh.png)
For n=4
![(-1)^(4) \hspace{3}-3*2^(4-1) =(1)-3*2^(3) =(1)-3*8=-24](https://img.qammunity.org/2021/formulas/mathematics/high-school/4wtidicv2b2lldb6ukeitp6mfynm4pxv7k.png)
So, one possible sequence is:
![a_n=-3(-1)^(n) \hspace{3}2^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7odt5e5x669p7bb5sqi2t3kf9vqma9jopa.png)
And the serie would be given by:
![$$\sum_(n=1)^(10) a_n $$ = $$\sum_(n=1)^(10) -3(-1)^(n) \hspace{3}2^(n-1) $$](https://img.qammunity.org/2021/formulas/mathematics/high-school/708g72nr93ib7bprpfvd96f8zh9858ud54.png)