Answer:
The sum of 10 terms is S₁₀ = -1023
Explanation:
Explanation:-
Given series
3 + (-6) + 12 + (-24) + ⋯
This is geometric sequence 3 , -6 ,12 , -24 ,....
a = 3 and common ratio
Given ratio r = -2 < 1
Sum of 'n' terms of a G.P
![S_(n) = (a(1-r^(n) ) )/(1-r) if r <1](https://img.qammunity.org/2021/formulas/mathematics/high-school/yqbmjwjtoe2stjc9rluc3ur9c7rf8iyhey.png)
Sum of '10' terms of a G.P
![S_(10) = (3((1-(-2 )^(10) )/(1-(-2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ot2sjd5rnhu6tz8jiqvccxslundbo0gt8k.png)
![S_(10) = (3((1-(-2 )^(10) )/(3) = 1-2^(10) = 1- 1024 = - 1023](https://img.qammunity.org/2021/formulas/mathematics/high-school/p0ldpykj6oi0m4fwgiabzxo4ffbthdez21.png)
Conclusion:-
Sum of '10' terms of a G.P = - 1023
Verification:-
The series of first 10 terms
3+(-6)+12+(-24)+48+(-96)+192+(-384)+768+(-1536) = -1023