Recall the double/half angle formulas:
![\cos^2\frac x2=\frac{1+\cos x}2](https://img.qammunity.org/2021/formulas/mathematics/college/obtctan5dauuko0wlipncvu0vkp4d17pad.png)
![\sin^2\frac x2=\frac{1-\cos x}2](https://img.qammunity.org/2021/formulas/mathematics/college/ljj21na054jken772zzzgirnve401zxkhk.png)
We're given
, and since
is between π/2 and π, we expect
to be negative. So from the Pythagorean identity, we find
![\sin^2u+\cos^2u=1\implies\cos u=-√(1-\sin^2u)=-\frac7{25}](https://img.qammunity.org/2021/formulas/mathematics/college/5b87kc4jmn8nki8eg2js4vk1q4z0y3wilu.png)
Also, we know
will fall between π/4 and π/2, so both
and
will be positive. Then we find
![\cos\frac u2=\sqrt{\frac{1+\cos u}2}=\frac35](https://img.qammunity.org/2021/formulas/mathematics/college/qnk0upsbtc09b2tuc56j0d9l2nvk7ifarr.png)
![\sin\frac u2=\sqrt{\frac{1-\cos u}2}=\frac45](https://img.qammunity.org/2021/formulas/mathematics/college/apb7drqqtfvquwfpx81kln1sk67doeaxqu.png)
and it follows that
![\tan\frac u2=(\sin\frac u2)/(\cos\frac u2)=\frac43](https://img.qammunity.org/2021/formulas/mathematics/college/77sqan6avblhclwj1ycxru700t8k468x0a.png)