155k views
1 vote
Find the exact values of sin(u/2) cos(u/2) and tan(u/2) given sin u=24/25 and pie/2 < u < pie

1 Answer

6 votes

Recall the double/half angle formulas:


\cos^2\frac x2=\frac{1+\cos x}2


\sin^2\frac x2=\frac{1-\cos x}2

We're given
\sin u=(24)/(25), and since
u is between π/2 and π, we expect
\cos u to be negative. So from the Pythagorean identity, we find


\sin^2u+\cos^2u=1\implies\cos u=-√(1-\sin^2u)=-\frac7{25}

Also, we know
\frac u2 will fall between π/4 and π/2, so both
\sin\frac u2 and
\cos\frac u2 will be positive. Then we find


\cos\frac u2=\sqrt{\frac{1+\cos u}2}=\frac35


\sin\frac u2=\sqrt{\frac{1-\cos u}2}=\frac45

and it follows that


\tan\frac u2=(\sin\frac u2)/(\cos\frac u2)=\frac43

User Emeeus
by
5.6k points