Answer:
![x< 3+4\: and\\\left | 3-4 \right |<x<\left | 3+4 \right |](https://img.qammunity.org/2021/formulas/mathematics/high-school/rs60b1nxmqeie1wje50e2b3kkd502rtl6v.png)
Explanation:
1. Well, when it comes to triangles. Mainly Pythagorean Triple, right triangles whose sides are 3,4,5 or 5,11,12
2. Keeping in mind this a Pythagorean Triple, then x=5
3. Then we can write it as Compound Inequality by combining the Statements for an Inequality of Triangle:
We can write it as
![5<3+4\\\left | 4-3 \right |<5<\left | 4+3 \right |](https://img.qammunity.org/2021/formulas/mathematics/high-school/16ude3qkk4wx2l60c53oloqq135gzj6t32.png)
Or we can do:
![4<3+5\\\left | 4-5 \right |<4<\left | 4+5 \right |](https://img.qammunity.org/2021/formulas/mathematics/high-school/fvyjn6q7gdum4p3fkt7cdcx3o7oygw48bt.png)
and:
![3<4+5\\\left | 4-5 \right |<3<\left | 4+5 \right |](https://img.qammunity.org/2021/formulas/mathematics/high-school/4120ko7t98o0pfduugibjx72wfnv93gol8.png)
4. Writing in terms of x:
![x<3+4\\\left | 3-4 \right |<x<\left | 3+4 \right |](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqfecioj56rjy4n3lng37x476zwic59wgc.png)