Answer:
4π/3 + 2√3 ≈ 7.653
Explanation:
Area between two polar curves is:
A = ∫ₐᵇ ½ (R² − r²) dθ
First, graph the curves. r = 2 is a circle with radius 2 and center (0,0). r = 4 cos θ is a circle with radius 2 and center (2,0).
Find where the curves intersect:
2 = 4 cos θ
1/2 = cos θ
θ = ±π/3
Between θ = -π/3 and θ = π/3, 4 cos θ > 2. So R = 4 cos θ and r = 2.
So the integral is:
A = ∫₋ᵖⁱ'³ ½ ((4 cos θ)² − 2²) dθ
A = ∫₋ᵖⁱ'³ ½ (16 cos²θ − 4) dθ
A = ∫₋ᵖⁱ'³ (8 cos²θ − 2) dθ
Using symmetry, we can write this as:
A = 2 ∫₀ᵖⁱ'³ (8 cos²θ − 2) dθ
A = ∫₀ᵖⁱ'³ (16 cos²θ − 4) dθ
Use power reduction formula:
A = ∫₀ᵖⁱ'³ (8 + 8 cos(2θ) − 4) dθ
A = ∫₀ᵖⁱ'³ (4 + 8 cos(2θ)) dθ
Integrate:
A = (4θ + 4 sin(2θ)) |₀ᵖⁱ'³
A = (4π/3 + 4 sin(2π/3)) − (0 + 0)
A = 4π/3 + 2√3
A ≈ 7.653