23.9k views
3 votes
Which expression is equivalent to log Subscript 12 Baseline StartFraction x Superscript 4 Baseline StartRoot x cubed minus 2 EndRoot Over (x + 1) Superscript 5 Baseline EndFraction?

4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x times 1)


4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline StartFraction x cubed Over 2 EndFraction minus 5 log Subscript 12 Baseline 1


log Subscript 12 Baseline 4 x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x) + 1


4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)

User Ghenne
by
7.9k points

2 Answers

2 votes

Answer

D

4logw (x^{2} - 6) - 1/3logw (x^{2} + 8)

Explanation:

User Towanna
by
8.3k points
4 votes

Answer:

(D)
4log_(12)x+(1)/(2) log_(12)(x^3-2)-5log_(12)(x+1)

4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)

Explanation:

Given the expression:


log_(12)(x^4√(x^3-2) )/((x+1)^5)

We first apply the division law of logarithm:
log_(a)x/y=log_(a)x-log_(a)y


log_(12)(x^4√(x^3-2) )/((x+1)^5)=log_(12)x^4√(x^3-2)-log_(12)(x+1)^5

Next, by addition law:
log_(a)xy=log_(a)x+log_(a)y


=log_(12)x^4+log_(12)√(x^3-2)-log_(12)(x+1)^5\\\\Log a^m=mLog a, Log √(x)=log x^(1/2)\\\\ =4log_(12)x+log_(12)(x^3-2)^(1/2)-5log_(12)(x+1)\\\\=4log_(12)x+(1)/(2) log_(12)(x^3-2)-5log_(12)(x+1)

The correct option is D.

User Sudhir Dhumal
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories