Answer:
(D)
![4log_(12)x+(1)/(2) log_(12)(x^3-2)-5log_(12)(x+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lu0zktu27yxusx5svmbu3y1zyqw44d0r30.png)
4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)
Explanation:
Given the expression:
![log_(12)(x^4√(x^3-2) )/((x+1)^5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/51y4g0b8iz8n1q93lmy6bd75ojsa1i3oqj.png)
We first apply the division law of logarithm:
![log_(a)x/y=log_(a)x-log_(a)y](https://img.qammunity.org/2021/formulas/mathematics/high-school/5ozjllgp2wba7trp3un34uqtp4433fjl10.png)
![log_(12)(x^4√(x^3-2) )/((x+1)^5)=log_(12)x^4√(x^3-2)-log_(12)(x+1)^5](https://img.qammunity.org/2021/formulas/mathematics/high-school/ypv91veif4ljbn52uav516mpx9v6frmmyz.png)
Next, by addition law:
![log_(a)xy=log_(a)x+log_(a)y](https://img.qammunity.org/2021/formulas/mathematics/high-school/2ych4zelr9yo1rpqmy0twjlptnjd0hlw2d.png)
![=log_(12)x^4+log_(12)√(x^3-2)-log_(12)(x+1)^5\\\\Log a^m=mLog a, Log √(x)=log x^(1/2)\\\\ =4log_(12)x+log_(12)(x^3-2)^(1/2)-5log_(12)(x+1)\\\\=4log_(12)x+(1)/(2) log_(12)(x^3-2)-5log_(12)(x+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmn9t7i5umwz7gf460plq2l4fcdmkilvvk.png)
The correct option is D.