Answer:
Angle between the forces
degrees
Step-by-step explanation:
The resultant force value
times of Force F
![|R| = |F1| = |F2| =|F|](https://img.qammunity.org/2021/formulas/biology/college/ax2smg24f7sa1m8abxj9lddaxst3rhgl8s.png)
Where R is the resultant force
![R^2 = A^2 + B^2 + 2AB cos X\\(1.5F)^2 = F^2 + F^2 + 2F^2 cos X\\2.25F^2 = 2F^2 + 2F^2 cos X\\](https://img.qammunity.org/2021/formulas/biology/college/j7djz8tathcue1ll8ftjow530l6y0hp2cv.png)
Cos X is the angle between the two forces.
On further simplifying the equation we get
![2.25F^2 = 2F^2(1 + cos X)](https://img.qammunity.org/2021/formulas/biology/college/toc5jro73ybxfk1sd2qti266rognl80buh.png)
![(1 + cos X) = (2.25F^2)/(2F^2) \\(1 + cos X) = (2.25)/(2) \\(1 + cos X) = 1.125\\cos X = 1.125 - 1\\Cos X = 0.125\\X = Cos^(-1)0.125\\](https://img.qammunity.org/2021/formulas/biology/college/4hkq3ytmzq8hsw5ezpdmv7yx9mgenrrvpi.png)
degrees
Angle between the forces
degrees